Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The incentre of the tetrahedron formed by the planes x=0,y=0,z=0  and x+y+z=   2024  is.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

20244,20243,20244

b

506,506,506

c

20243,20243,20243

d

220243,20244,20243

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

It is evident that the planes x=0,y=0,z=0 meet in 0,0,0 .Hence the incentre lies on the perpendicular from 0,0,0 to the plane x+y+z=a   and divides it in the ratio 3:1 ( 3 from the vertex 0,0,0 and 1from the plane x+y+z=a ).
The equation of the perpendicular from 0,0,0  to the plane x+y+z=a  is x1=y1=z1=rsay                                             
Any point this perpendicular is  r,r,r.If it lies on the plane x+y+z=a ,then we have   r+r+r=a
Or        r=a3
 The perpendicular from  0,0,0 meets the plane x+y+z=a   in r,r,r  i.e., a3,a3,a3  .Also the incentre divides the join of 0,0,0  and a3,a3,a3  in the ratio 3:1 , therefore if x1,y1,z1   be the required incentre, 
We have     x1=3.a3+1.03+1=a4
Similarly  y1=a4=z
The required incentre is a4,a4,a4 . Since  a=2024  then incentre is  506,506,506
 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring