Q.

The integral Tan1λcot1λtanxtanx+cotxdx,λR cannot take the value 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

π4

b

π4

c

π2

d

3π4

answer is A, D, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

I=tan1λcot1λtanxtanx+cotxdx λR apply the property fx=fa+b-x and tan1λ+cot1λ=π2I=tan1λcot1λcotxcotx+tanxdx 2I=tan1λcot1λcotx+tanxcotx+tanxdx I=12cot1λ-tan1λ =12π2-2tan1λ  since π2<tan1x<π2 π<2tan1x<π3π2>π22tan1x>π2 12π2-2tan1λπ4,3π4

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon