Q.

The length of a focal chord of the parabola y2=4ax at a distance 'b' from the vertex is 'c' then 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

4a3=b2c

b

bc=b2

c

2a2=bc

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 

Let one end of the focal chord be  ( at2,2a t )  , then the length of the that chord is c = a ( t + 1t )2 ( 1 )   Now equation of the focal chord will be y  0 = ( 2at-0at2-a ) ( x  a ) y=2tt2-1(x-a)   As we know that vertex coordinates of the parabola is  ( 0 , 0 )   Hence perpendicular distance from will be  b = -2att2-11+4t2(t2-1)2= | 2 a t |t2+1  ( 2 )   from  ( 1 ) × ( 2 )2   ,  t  will get eliminated and we get  b2 c= 4a3     

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon