Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

The length of the subtangent (if exists) at any point θ on the hyperbola x2a2-y2b2=1 is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

asinθsec2θ

b

a sinθsecθ

c

asinθ cosθ

d

a sin2θsec θ

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given curve is x2a2+y2b2=1
2xa2+2yb2dydx=0dydx=b2xa2y
=b2acosθa2bsinθ=bcosθasinθ
 Length of sub-tangent  =ydydx=bsinθbcosθasinθ=asin2θcosθ
=ydydx==asin2θcosθ =asin2θ|secθ|
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon