Q.

The length of the subtangent (if exists) at any point θ on the hyperbola x2a2-y2b2=1 is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

asinθsec2θ

b

asinθ cosθ

c

a sinθsecθ

d

a sin2θsec θ

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given curve is x2a2+y2b2=1
2xa2+2yb2dydx=0dydx=b2xa2y
=b2acosθa2bsinθ=bcosθasinθ
 Length of sub-tangent  =ydydx=bsinθbcosθasinθ=asin2θcosθ
=ydydx==asin2θcosθ =asin2θ|secθ|
 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon