Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

The line segment joining the points A(3,4)  and B(1,2)  is trisected at the points P and Q , where P is nearer to A . Find the coordinates of the point P .

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

P(x,y)=(72,3) 

b

P(x,y)=(72,8) 

c

P(x,y)=(73,2) 

d

P(x,y)=(1,3)  

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given: The line segment joining the points A(3,4)  and B(1,2)  is trisected at the point P and Q, where P is nearer to A. 
We have to find the coordinates of the point P by using the section formula.
Given that the point P is the point of trisection of the line segment AB, so P divides AB in the ratio is 1:2 That means m=1  and n=2

The points are A(3,4)  and B(1,2).
Question Image

So, x1=3, y1=4  and x2=1, y2=2  

Now, first, we find the value of x using the section formula,

x=mx2+nx1m+n

x=1(1)+2(3)1+2=73
   
Now, we find the value of y,

y=my2+ny1m+n

y=1(2)+2(-4)1+2=-2 
Therefore, the coordinates of the point P is, P(x,y)=(73,2) .
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The line segment joining the points A(3,−4)  and B(1,2)  is trisected at the points P and Q , where P is nearer to A . Find the coordinates of the point P .