Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The lines of the form xcosϕ+ysinϕ=p are chords of the hyperbola 4x2 y2 =4a2 which subtend a right angle at the centre of the hyperbola. If these chords touch a circle with centre at (0,0), then the radius of that circle is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2a

b

a3

c

2a3

d

a2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given hyperbola 4x2-y2=4a2       Given chord xcosθ+y sinθ=P       Homogeniosing  with help of  then 4x2-y2=4a2xcosθ+y sinθP2 4x2-y2=4a2P2(x2 cos2θ)+4a2P2y2sin2θ+8a2P2(xysinθ  cosθ) It subtend a right angle at (0, 0) then  x2coeff +y2 coeff=0

4a2P2 cos2θ-4+4a2P2sin2θ+1=0 4a2P2(cos2θ+sin2θ)=3 3P2=4a2(1) P=2a3   xcosθ+ysinθ 2a3=0       If it is a tangent to circle with centre (0, 0) then  r=d=be distance from (0, 0) to   r=-2a3cos2θ+sin2θ  r=2a3

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring