Q.

The locus of middle points of normal chords of the rectangular hyperbola x2y2=a2 is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

(x2 + y2)3 + 4a2x2y2 = 0

b

(x2 + y2)3 - 4a2x2y2 = 0

c

(x2 - y2)3 + 4a2x2y2 = 0

d

(x2 - y2)2 - 4a2x2y2 = 0

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x2-y2=a2 If (h, k) be mid point of any chord of hyperbola then its equation is hx-ky=h2-k2       ( S1=S11) But (1) is a normal to hyperbola, then its equation is axsecθ+aytanθ=2a2 x cosθ+y cotθ=2a       since   &  represents same line then  hcosθ=-kcotθ =h2-k22a secθ=h2-k22ah, tanθ=-(h2-k2)2ak Now sec2θ-tan2θ=1 (h2-k2)24a2h2-(h2-k2)24a2k2=1  (h2-k2)24a2 1h2-1k2=1 (h2-k2)24a2 k2-h2h2 k2=1 (h2-k2)3=-4a2h2k2  locus is (x2-y2)3+4a2x2y2=0

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon