Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The locus of middle points of normal chords of the rectangular hyperbola x2y2 = a2 is 
 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(x2 + y2)3 + 4a2x2y2 = 0

b

(x2 - y2)3 + 4a2x2y2 = 0

c

(x2 + y2)3 - 4a2x2y2 = 0

d

(x2 -y2)2 - 4a2x2y2 = 0

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given hyperbola x2-y2=a2

let p(x1,y1) be locus of mid point of normal chord

 Now chord equation is S1=S11

xx1-yy1=x12-y12 (1)

Equation of normal  at  P(θ) to the hyperbola is  

axsecθ-aytanθ=2a2 x cosθ-y cotθ=2a (2)

 since (1) and (2) represents same line then  cosθx1=-cotθ- y1=2ax12-y12 cosθ=2ax1x12-y12, cotθ=2ay1x12-y12 Now sinθ=cosθcotθ=x1y1 and  sin2θ+cos2θ=1 x21y21+4a2x21(x21-y21)2=1 x12-y122x21 +4a2 x12 y12=(x21-y21)2y21 x12-y122(x21- y12)+4a2 x12 y12=0  locus is (x2-y2)3+4a2x2y2=0

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring