Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The locus of the centroid of an equilateral triangle inscribed in the parabola  y2=4ax is .

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

9y2=2a(x6a)

b

9x2=8a(y4a)

c

9x2=4a(y+8a)

d

9y2=4a(x8a)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let P, Q, and R be three points on the parabola.

Question Image

Let the co-ordinates of the centroid be G(α,β)

Clearly α=at12+t22+t323

and β=2at1+t2+t33

Now,

Slope of PQ=2at1t2at12t22=2t1+t2

and the slope of PR=2at1t3at12t32=2t1+t3

Clearly QPR=60

tan60=2t1+t22t1+t31+2t1+t22t1+t3

 3=2t3t2t1+t2t2+t3+4 3t1+t2t2+t3+4=2t2t3

Similarly Q=60 and R=60

Thus,  3t1+t2t1+t3+4=2t3t1

3t1t2+t2t3+t3t1+t12+t22+t32+12=03t1t2+t2t3+t3t1+3αa+12=0t1t2+t2t3+t3t1+αa+4=0at1t2+t2t3+t3t1+α+4a=02at1t2+t2t3+t3t1+2α+8a=0at1+t2+t32t12+t22+t32+2α+8a=0

 a9β24a23αa+2α+8a=0 9β24a3α+2α+8a=0

 9β2=4a(α8a)

Hence, the locus,

9y2=4a(x8a)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring