Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The locus of the point of intersection of tangents to the hyperbola x2 y2 =a2 which include an angle of 45º is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(x2 +y2)2 = 4a2(x2+y2+a2)

b

(x2 +y2)2 = 4a2(x2-y2+a2)

c

(x2 +y2)2 = 4a2(y2-x2+a2)

d

(x2 +y2)2 = 4a2(x2+y2-a2)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let y=mx±a2m2-a2 be two tangents to the hyperbola. If it passes through (x1, y1) then (y1-mx1)2=a2m2-a2 m2(x12-a2)-2mx1y1+y12+a2=0 m1+m2=2x1y1x12-a2, m1m2=y12+a2x12-a2 If 'θ' is angle between tangents then  tan45=m1-m21+m1m2 1=m1-m21+m1m2 m1-m2=1+m1m2 (m1-m2)2=(1+m1m2)2  (m1+m2)2-4m1m2=(1+m1m2)2 (2x1y1x12-a2)2-4(y12+a2x12-a2)=(1+y12+a2x12-a2)2  4x12y12-4(y12+a2)(x12-a2)=(x12-a2+y12+a2)2  4a2(y12-x12+a2)=(x21+y12)2 locus is (x2 +y 2)2=4a2(y2-x2+a2)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring