Q.

The locus of the point of intersection of two tangents to the hyperbola x2a2-y2b2=1 which make an angle 600 with one another is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

x2 +y2 = a2b2

b

(x2+y2 a2+b2 )2 = 4(a2y2b2x2+a2b2 )

c

(x2+y2 a2+b2 )2 = 12(a2y2b2x2+a2b2 )

d

3(x2+y2a2+b2)2 = 4(a2y2b2x2 +a2b2 )

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Equation of tangent to the given hyperbola with slope 'm' is y=mx±a2m2-b2 (y-mx)2  =a2m2-b2  y2+m2x2-2mxy-a2m2+b2=0 (x2-a2)m2-2mxy+y2+b2=0 It is a quadratic equation in m.It has two roots let  it be m1, m2  where m1+m2=2mx2-a2, m1.m2=y2+b2x2-a2 Now tan θ=m1-m21+m1m2 3=±(m1+m2)2-4m1m21+m1m2 3=2xyx2-a22-4y2+b2x2-a21+y2+b2x2-a22 on simplifying we get 3(x2+y2-a2+b2)2=4(a2y2-b2x2+a2b2)

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon