Q.

The magnetic field inside a 200 turns solenoid of radius 10 cm is 2.9×104 Tesla. If the solenoid carries a current of 0.29 A, then the length of the solenoid is _____ π cm.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 8.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We are given the following parameters for a solenoid:

Number of turns: N=200N = 200

Radius: r=10r = 10 cm (not needed for calculation)

Magnetic field: B=2.9×104B = 2.9 \times 10^{-4} T

Current: I=0.29I = 0.29 A

Length of solenoid: LL (to be found in terms of π\pi)

Step 1: Use the Magnetic Field Formula for a Solenoid

The magnetic field inside a solenoid is given by:

B=μ0NLIB = \mu_0 \frac{N}{L} I

where:

μ0=4π×107\mu_0 = 4\pi \times 10^{-7} T·m/A (permeability of free space),

NN is the total number of turns,

LL is the length of the solenoid,

II is the current.

Rearranging for LL:

L=μ0NIBL = \mu_0 \frac{N I}{B}

Step 2: Substitute Given Values

L=(4π×107)×200×0.292.9×104L = \left( 4\pi \times 10^{-7} \right) \times \frac{200 \times 0.29}{2.9 \times 10^{-4}}

L=(4π×107)×(2×105)L = (4\pi \times 10^{-7}) \times (2 \times 10^5)

 L=8π×102 mL = 8\pi \times 10^{-2} \text{ m} 

L=8π×10 cmL = 8\pi \times 10 \text{ cm} 

L=8π cmL = 8\pi \text{ cm} 

Final Answer:

8

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon