Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The magnetic field inside a 200 turns solenoid of radius 10 cm is 2.9×104 Tesla. If the solenoid carries a current of 0.29 A, then the length of the solenoid is _____ π cm.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 8.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We are given the following parameters for a solenoid:

Number of turns: N=200N = 200

Radius: r=10r = 10 cm (not needed for calculation)

Magnetic field: B=2.9×104B = 2.9 \times 10^{-4} T

Current: I=0.29I = 0.29 A

Length of solenoid: LL (to be found in terms of π\pi)

Step 1: Use the Magnetic Field Formula for a Solenoid

The magnetic field inside a solenoid is given by:

B=μ0NLIB = \mu_0 \frac{N}{L} I

where:

μ0=4π×107\mu_0 = 4\pi \times 10^{-7} T·m/A (permeability of free space),

NN is the total number of turns,

LL is the length of the solenoid,

II is the current.

Rearranging for LL:

L=μ0NIBL = \mu_0 \frac{N I}{B}

Step 2: Substitute Given Values

L=(4π×107)×200×0.292.9×104L = \left( 4\pi \times 10^{-7} \right) \times \frac{200 \times 0.29}{2.9 \times 10^{-4}}

L=(4π×107)×(2×105)L = (4\pi \times 10^{-7}) \times (2 \times 10^5)

 L=8π×102 mL = 8\pi \times 10^{-2} \text{ m} 

L=8π×10 cmL = 8\pi \times 10 \text{ cm} 

L=8π cmL = 8\pi \text{ cm} 

Final Answer:

8

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon