Q.

The maximum percentage error in the measurement of density of a wire is

[Given, mass of wire = (0.60 ± 0.003)g; radius of wire = (0.50 ± 0.01)cm; length of wire = (10.00 ± 0.05)cm]

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

8

b

7

c

4

d

5

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given Data:

Mass of wire:

  • m=(0.60±0.003) gm = (0.60 \pm 0.003) \text{ g}

Percentage error in mass:

  • Δmm×100=0.0030.60×100=0.5%\frac{\Delta m}{m} \times 100 = \frac{0.003}{0.60} \times 100 = 0.5\%

Radius of wire:

  • r=(0.50±0.01) cmr = (0.50 \pm 0.01) \text{ cm}

Percentage error in radius:

  • Δrr×100=0.010.50×100=2%\frac{\Delta r}{r} \times 100 = \frac{0.01}{0.50} \times 100 = 2\%

Length of wire:

  • l=(10.00±0.05) cml = (10.00 \pm 0.05) \text{ cm}

Percentage error in length:

  • Δll×100=0.0510.00×100=0.5%\frac{\Delta l}{l} \times 100 = \frac{0.05}{10.00} \times 100 = 0.5\%

Step 1: Formula for Density

Density ρ\rho is given by:

ρ=MassVolume\rho = \frac{\text{Mass}}{\text{Volume}}

For a cylindrical wire, volume:

V=πr2lV = \pi r^2 l

Thus, density:

ρ=mπr2l\rho = \frac{m}{\pi r^2 l}

Step 2: Maximum Percentage Error in Density

Using the error propagation formula:

Δρρ=Δmm+2Δrr+Δll\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + 2 \frac{\Delta r}{r} + \frac{\Delta l}{l}

Substituting values:

Δρρ×100=0.5%+2(2%)+0.5%\frac{\Delta \rho}{\rho} \times 100 = 0.5\% + 2(2\%) + 0.5\%

 =0.5%+4%+0.5%= 0.5\% + 4\% + 0.5\% =5%= 5\%

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon