Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 The normal at a point P on the ellipse x2+4y2=16 meets  the x -axis at Q . If M is the midpoint of the line segment 

PQ , then the locus of M intersects the latus rectums of the  given ellipse at points 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

(±23,±1/7)

b

(±23,±43/7)

c

(±(35)/2,±2/7)

d

(±(35)/2,±19/7)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 Normal at P is given by 4xsecϕ2ycosecϕ=12

Question Image

Q(3cosϕ,0) Let mid-point of PQ be M(α,β) . α=3cosϕ+4cosϕ2=72cosϕ or cosϕ=27α and β=sinϕ

 Using cos2ϕ+sin2ϕ=1 , we have 

449α2+β2=1 or 449x2+y2=1----(1)

 Now, the latus rectum to above ellipse is x=±23-----(2)

 Solving (1) and (2), we have 

4849+y2=1 or y=±17

 The points of intersection are (±23,±1/7) . 

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon