Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The normals at point A and B on y2=4ax meet the parabola in a point C on the parabola, the locus of orthocenter of triangle ABC is the parabola

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

y2=ax+6a

b

y2=x6a

c

y2=ax+6

d

y2=x+6a

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

y2=4ax......  (1) 
 Let assume A and B are on the parabola 
Aat12, 2at1 Bat22, 2at2
 Equation of Normal at  A
t1x+y=2at1+at13 .....................(2) 
 Equation of normat at  B
t2x+y=2at2+at32
 Now equp (2) and equ (3) meers at C on parabola, t1t2=2
 slope of line ⊥ to the normal drawn at pt A=1t1
 and this  line passes through pt B
y2at2=1t1xat22t1y2at1t2=xat22xt1y=at224a t1t2=2
y2a1=1t2xat12t2y2at1t2=xat12xt2y=at124a t1t2=2
 For orthocentre O(h,k), solve equ AD and BE
x=at1t1+t2+at224ax=at12+at1t2+at224ax=at12+at222ax=at12+t222ax+2a=at2+t22h, k=at12+t222a,at1+t2
 h=at12+t222ah+2a=at12+t22=at12+t22+2t1t22t1t2h+2a=at1+t222×2k=at1+t2h+2a=ak2a24t1+t2=kah+2a=ak24a2a2=k24a2aah+2a2=k2-4a2 
y2=a[x+6a]

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring