Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The number of critical points of f(x)=max{sinx,cosx},x(-2π,2π) is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

5

b

6

c

7

d

8

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given : f(x)=max{sinx,cosx},x(-2π,2π)

Critical points are the points where either f'x=0 or f'x is not defined or fx is non-differentiable.

The graph of f(x)=max{sinx,cosx} is,

Question Image

As we know that a function fx is non-differentiable at points that have sharp edge points in graph.

The points where the function f(x)=max{sinx,cosx} has sharp points in the graph are x=π4,5π4,-3π4,-7π4.

Thus, f(x)=max{sinx,cosx} is non-differentiable at points x=π4,5π4,-3π4,-7π4

Also, f'(x)=0 at x=-3π4,0,π2

Hence, there are 7 critical points in (-2π,2π) that are x=π4,5π4,-3π4,-7π4,0,π2,-3π2

Hence option-3 is the correct answer.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The number of critical points of f(x)=max{sinx,cosx},∀x∈(-2π,2π) is