Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The number of functions f:{1,2,3,4}{aZ:|a|8} satisfying  f(n)+1nf(n+1)=1,n{1,2,3} is 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

3

c

2

d

4

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

 f:{1,2,3,4}{az,|a|8}f(n)+1nf(n+1)=1,n{1,2,3}

fn+1 must be divisible by n

f(4)6,3,0,3,6f(3)8,6,4,2,0,2,4,6,8f(2)8,,8f(1)8,,8

f(4)3 must be odd since f(3) should be even

 therefore 2 solution possible.  f=1,12,03,24,-3 

or f=1,0,2,1,3,0,4,3


 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
The number of functions f:{1,2,3,4}→{a∈Z:|a|≤8} satisfying  f(n)+1nf(n+1)=1,∀n∈{1,2,3} is