Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The number of ordered triplet(s)  (x,y,z) where x,y,zR+  satisfying the following equations is/are

2x2y+1z=120232y2z+1x=120232z2x+1y=12023

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

2

b

1

c

0

d

infinite

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Now, 2xz2yz+1=z2023  -----------------------------------(1)
and 2yx2zx+1=x2023  ------------------------------------(2)
and 2zy2xy+1=y2023 -------------------------------------(3)
Adding eq.s (1),(2) and (3), we get  3=z+x+y2023
i.e., x+y+z=3  (2023) -------------------------------------------(4)          
Similarly by adding given expressions, 
we get  1x+1y+1z=32023-------------------(5)
Now by Cauchy-Schwartz inequality,  (x+y+z)(1x+1y+1z)(3)2
i.e.,  3(2023)(1x+1y+1z)91x+1y+1z93.202332023
But, 1x+1y+1z=32023 (from eq.(5))
Hence, equality should hold  x=y=z
As,   x+y+z=3(2023)x=2023;y=2023;z=2023.
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The number of ordered triplet(s)  (x,y,z) where x,y,z∈R+  satisfying the following equations is/are2x−2y+1z=120232y−2z+1x=120232z−2x+1y=12023