Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

The number of real solutions of the equation
 sin1i=1xi+1xi=1x2i=π2cos1i=1(x2)ii=1(x)i
lying in the interval (0,2) is _____.
(Here, the inverse trigonometric function sin1x  and  cos1x  assume values in π2,π2 and [0,π] , respectively.)
 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

sin1(x21xx(x2)1x2)=π2cos1(x/21+x2(x)1+x)

sin1(x2(11x12x))=π2cos1(x(11+x12+x))

sin1[x2(1x)(2x)]=π2cos1[x(1+x)(2+x)]

sin1[x2(1x)(2x)]=sin1[x(1+x)(2+x)]

x[x(1x)(2x)1(1+x)(2+x)]=0   x=0 or x3+3x2+2x=x23x+2

x3+2x2+5x2=0  increasing function x 

  f(0)=2<0,  f(12)>0

 one root between (0,12)    total number of solutions = 1

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The number of real solutions of the equation sin−1∑i=1∞xi+1−x∑i=1∞x2i=π2−cos−1∑i=1∞(−x2)i−∑i=1∞(−x)ilying in the interval (0,2) is _____.(Here, the inverse trigonometric function sin−1x  and  cos−1x  assume values in −π2,π2 and [0,π] , respectively.)