Q.

The number of real solutions of the equation
 sin1i=1xi+1xi=1x2i=π2cos1i=1(x2)ii=1(x)i
lying in the interval (0,2) is _____.
(Here, the inverse trigonometric function sin1x  and  cos1x  assume values in π2,π2 and [0,π] , respectively.)
 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

sin1(x21xx(x2)1x2)=π2cos1(x/21+x2(x)1+x)

sin1(x2(11x12x))=π2cos1(x(11+x12+x))

sin1[x2(1x)(2x)]=π2cos1[x(1+x)(2+x)]

sin1[x2(1x)(2x)]=sin1[x(1+x)(2+x)]

x[x(1x)(2x)1(1+x)(2+x)]=0   x=0 or x3+3x2+2x=x23x+2

x3+2x2+5x2=0  increasing function x 

  f(0)=2<0,  f(12)>0

 one root between (0,12)    total number of solutions = 1

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon