Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The number of triples (x,a,b) where x is a real number and a, b belong to the set {1,2,3,4,5,6,7} such that x2a{x}+b=0, (where { } denotes FPF) is R, then absolute difference of digits in R is ______

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 2.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Consider  x=I+f,0f<1

(I+f)2af+b=0I2+2If+f2af+b=0f2+f(2Ia)+b+I2=0

f1f2=b+I21f1f2=b+I21 as b{1,2.......7}, g(f)=f2+f(2Ia)+b+I2

g(0)=b+I2>

But  f<1,f2+f(2Ia)+b+I2  should be less than zero at f = 1

1+2Ia+I2+b<0(I+1)2+b<a (I+1)2<ab6<(I+1)2<6

Possible value of I are  3,2,1,0,1I=34+b<ab<a4

a=7b<3{1,2}, a=6b<2{1}, a=5b<1

Number of solutions = I + 1 = 3

I=21+b<ab<a1 a=7b<6{1,2,3,4,5}, a=6b<5{1,2,3,4}, a=5b<4{1,2,3}, a=4b<3{1,2}, a=3b<2{1}, a=2b<1.

Number of solutions = 5 + 4 + 3 + 2 + 1 = 15

I=10+b<ab<a   7C2=21

I=01+b<a same as I=215 solutions

I=14+b<a same as  I=33 solutions

Number of solutions = 3 + 15 + 21 + 15 + 3 = 57

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon