Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The perpendicular 𝐴𝐷 on the base 𝐵𝐶 of a ∆𝐴𝐵𝐶 intersects 𝐵𝐶 at 𝐷 so that
𝐷𝐵 = 3𝐶𝐷. Prove that 2(𝐴𝐵)2 = 2(𝐴𝐶)2   + 𝐵𝐶2 .

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We are given that 𝐴D is perpendicular to 𝐵𝐶 and 𝐷𝐵 = 3𝐶𝐷.

Question Image

Here, 𝐵𝐶 = 𝐵𝐷 + 𝐶𝐷

⇒ 𝐵𝐶 = 3𝐶𝐷 + 𝐶𝐷 (given)

⇒ 𝐵𝐶 = 4𝐶𝐷

⇒ 𝐶𝐷 = 1/4 𝐵𝐶

So, 𝐷𝐵 = 3𝐶𝐷
⇒ 𝐷𝐵 = 3/4 𝐵𝐶
So, ∆𝐴𝐵𝐷 and ∆𝐴𝐷𝐶 are right-angled triangles.
We can apply Pythagoras’ theorem to these triangles.
∆𝐴𝐵𝐷, 𝐴𝐷2 + 𝐵𝐷2   = 𝐴𝐵2   … eq(1)

⇒ 𝐴𝐷 + ( 3/4BC)2 = AB2
= AD + 9/16 BC2 + AB2
⇒ 𝐴𝐷2 = AB2 - 9/16BC2

∆𝐴𝐶𝐷, 𝐴𝐷2 + 𝐶𝐷2  = AC2

𝐴𝐷2 + (1/4BC)2  = AC2

𝐴𝐷2 + 1/16BC2  = AC2

𝐴𝐵2 − 9/16B𝐶2  +1/ 16 𝐵𝐶2 = AC2
⇒   𝐴𝐵2 − 𝐴𝐶2   = 9/16 𝐵𝐶2 - 1/16BC2
⇒   𝐴𝐵2 − 𝐴𝐶2 = 8/16𝐵𝐶2
⇒   2(𝐴𝐵2 − 𝐴𝐶2 ) = 𝐵𝐶2
⇒   2𝐴𝐵2 − 2𝐴𝐶2 = 𝐵𝐶2
⇒ 2(𝐴𝐵)2 = 2(𝐴𝐶)2  + 𝐵𝐶2
Hence, proved.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon