Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The point of intersection of the curves arg(z3i)=3π4 and arg(2z+12i)=π4 is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

14(39i)

b

None of these 

c

14(3+9i)

d

12(3+2i)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let z=x+iy, then arg(z3i)=arg(x+iy3i)=3π4

x<0,y3>0 3π4 is in II quadrant) 

and y3x=tan3π4=1

y=x+3x<0 and y>3                …(1)

and arg(2z+12i)=arg[(2x+1)+i(2y2)]=π4

2x+1>0,2y2>0π4 is in I quadrant 

and 2y22x+1=tanπ4=12y2=2x+1

y=x+32x>12,y>1                 …(2)

From equations (1) and (2), we get graph 

Question Image

It is clear from the graph that two lines do not intersect.

        No point of intersection. 

Caution : It is most likely that the students after getting two straight lines, solve them to get the point of

intersection 34,94. Clearly the principal values of arguments must be considered. 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring