Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The position vectors of two 1 kg particles, (A) and (B), are given by rA=α1t2i^+α2tj^+α3tk^ m and rB=β1ti^+β2t2j^+β3tk^ m respectively (α1=1 m/s2,α2=3n m/s,α3=2 m/s,β1=2 m/s, β2=1 m/s2,β3=4p m/s), where t is time, n and p are constants. At t=1s,|VA|=|VB| and velocities VA and VB of the particles are orthogonal to each other. At t = 1 s, the magnitude of angular momentum of particle (A) with respect to the position of particle (B) isL kgm2s1. The value of L is _____. 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 90.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We are given the position vectors of two particles A and B as functions of time:

rA=α1t2i^+α2tj^+α3tk^\mathbf{r}_A = \alpha_1 t^2 \hat{i} + \alpha_2 t \hat{j} + \alpha_3 t \hat{k}

 rB=β1ti^+β2t2j^+β3tk^\mathbf{r}_B = \beta_1 t \hat{i} + \beta_2 t^2 \hat{j} + \beta_3 t \hat{k}

Given values:
α1=1\alpha_1 = 1α2=3n\alpha_2 = 3nα3=2\alpha_3 = 2
β1=2\beta_1 = 2β2=1\beta_2 = -1β3=4p\beta_3 = 4p

At t=1st = 1s, the velocity vectors are:

VA=2i^+3nj^+2k^\mathbf{V}_A = 2 \hat{i} + 3n \hat{j} + 2 \hat{k}

 VB=2i^2j^+4pk^\mathbf{V}_B = 2 \hat{i} - 2 \hat{j} + 4p \hat{k}

Step 1: Apply Given Conditions

Condition 1: Orthogonality of Velocities

VAVB=0\mathbf{V}_A \cdot \mathbf{V}_B = 0

 (2×2)+(3n×2)+(2×4p)=0(2 \times 2) + (3n \times -2) + (2 \times 4p) = 0 46n+8p=04 - 6n + 8p = 0 6n=8p+46n = 8p + 4

Condition 2: Equal Speeds

VA=VB|\mathbf{V}_A| = |\mathbf{V}_B|

 4+9n2+4=4+4+16p24 + 9n^2 + 4 = 4 + 4 + 16p^2 

8+9n2=8+16p28 + 9n^2 = 8 + 16p^2

 9n2=16p29n^2 = 16p^2

 n2p2=169  np=±43\frac{n^2}{p^2} = \frac{16}{9} \quad \Rightarrow \quad \frac{n}{p} = \pm \frac{4}{3}

Step 2: Solve for nn and pp

Case 1: n/p=4/3n/p = 4/3

No valid solution.

Case 2: n/p=4/3n/p = -4/3

n=43pn = -\frac{4}{3} p

Substituting into 6n=8p+46n = 8p + 4:

6×(43p)=8p+46 \times \left(-\frac{4}{3} p\right) = 8p + 4

 8p=8p+4-8p = 8p + 4 16p=4-16p = 4 p=14p = -\frac{1}{4} n=13n = \frac{1}{3}

Step 3: Compute Angular Momentum

Relative Position of A w.r.t. B

rArB=(1)i^+(3n+1)j^+(24p)k^\mathbf{r}_A - \mathbf{r}_B = (-1) \hat{i} + (3n + 1) \hat{j} + (2 - 4p) \hat{k}

Substituting n=13n = \frac{1}{3} and p=14p = -\frac{1}{4}:

3n+1=2, 24p=33n + 1 = 2, \quad 2 - 4p = 3

 rArB=i^+2j^+3k^\mathbf{r}_A - \mathbf{r}_B = -\hat{i} + 2 \hat{j} + 3 \hat{k}

Velocity of A

VA=2i^+1j^+2k^\mathbf{V}_A = 2 \hat{i} + 1 \hat{j} + 2 \hat{k}

Compute Angular Momentum,  L=m(rArB)×VA

i^j^k^123212\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 3 \\ 2 & 1 & 2 \end{vmatrix}

Expanding:

i^(2×23×1)j^(1×23×2)+k^(1×12×2)\hat{i} (2 \times 2 - 3 \times 1) - \hat{j} (-1 \times 2 - 3 \times 2) + \hat{k} (-1 \times 1 - 2 \times 2)

 i^(1)j^(8)+k^(5)\hat{i} (1) - \hat{j} (-8) + \hat{k} (-5) 

L=1i^+8j^5k^\mathbf{L} = 1 \hat{i} + 8 \hat{j} - 5 \hat{k}

Magnitude of Angular Momentum

L=12+82+(5)2L = \sqrt{1^2 + 8^2 + (-5)^2}

 L=1+64+25=90=310L = \sqrt{1 + 64 + 25} = \sqrt{90} = 3\sqrt{10} 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring