Q.

The position vectors of two 1 kg particles, (A) and (B), are given by rA=α1t2i^+α2tj^+α3tk^ m and rB=β1ti^+β2t2j^+β3tk^ m respectively (α1=1 m/s2,α2=3n m/s,α3=2 m/s,β1=2 m/s, β2=1 m/s2,β3=4p m/s), where t is time, n and p are constants. At t=1s,|VA|=|VB| and velocities VA and VB of the particles are orthogonal to each other. At t = 1 s, the magnitude of angular momentum of particle (A) with respect to the position of particle (B) isL kgm2s1. The value of L is _____. 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 90.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We are given the position vectors of two particles A and B as functions of time:

rA=α1t2i^+α2tj^+α3tk^\mathbf{r}_A = \alpha_1 t^2 \hat{i} + \alpha_2 t \hat{j} + \alpha_3 t \hat{k}

 rB=β1ti^+β2t2j^+β3tk^\mathbf{r}_B = \beta_1 t \hat{i} + \beta_2 t^2 \hat{j} + \beta_3 t \hat{k}

Given values:
α1=1\alpha_1 = 1α2=3n\alpha_2 = 3nα3=2\alpha_3 = 2
β1=2\beta_1 = 2β2=1\beta_2 = -1β3=4p\beta_3 = 4p

At t=1st = 1s, the velocity vectors are:

VA=2i^+3nj^+2k^\mathbf{V}_A = 2 \hat{i} + 3n \hat{j} + 2 \hat{k}

 VB=2i^2j^+4pk^\mathbf{V}_B = 2 \hat{i} - 2 \hat{j} + 4p \hat{k}

Step 1: Apply Given Conditions

Condition 1: Orthogonality of Velocities

VAVB=0\mathbf{V}_A \cdot \mathbf{V}_B = 0

 (2×2)+(3n×2)+(2×4p)=0(2 \times 2) + (3n \times -2) + (2 \times 4p) = 0 46n+8p=04 - 6n + 8p = 0 6n=8p+46n = 8p + 4

Condition 2: Equal Speeds

VA=VB|\mathbf{V}_A| = |\mathbf{V}_B|

 4+9n2+4=4+4+16p24 + 9n^2 + 4 = 4 + 4 + 16p^2 

8+9n2=8+16p28 + 9n^2 = 8 + 16p^2

 9n2=16p29n^2 = 16p^2

 n2p2=169  np=±43\frac{n^2}{p^2} = \frac{16}{9} \quad \Rightarrow \quad \frac{n}{p} = \pm \frac{4}{3}

Step 2: Solve for nn and pp

Case 1: n/p=4/3n/p = 4/3

No valid solution.

Case 2: n/p=4/3n/p = -4/3

n=43pn = -\frac{4}{3} p

Substituting into 6n=8p+46n = 8p + 4:

6×(43p)=8p+46 \times \left(-\frac{4}{3} p\right) = 8p + 4

 8p=8p+4-8p = 8p + 4 16p=4-16p = 4 p=14p = -\frac{1}{4} n=13n = \frac{1}{3}

Step 3: Compute Angular Momentum

Relative Position of A w.r.t. B

rArB=(1)i^+(3n+1)j^+(24p)k^\mathbf{r}_A - \mathbf{r}_B = (-1) \hat{i} + (3n + 1) \hat{j} + (2 - 4p) \hat{k}

Substituting n=13n = \frac{1}{3} and p=14p = -\frac{1}{4}:

3n+1=2, 24p=33n + 1 = 2, \quad 2 - 4p = 3

 rArB=i^+2j^+3k^\mathbf{r}_A - \mathbf{r}_B = -\hat{i} + 2 \hat{j} + 3 \hat{k}

Velocity of A

VA=2i^+1j^+2k^\mathbf{V}_A = 2 \hat{i} + 1 \hat{j} + 2 \hat{k}

Compute Angular Momentum,  L=m(rArB)×VA

i^j^k^123212\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 3 \\ 2 & 1 & 2 \end{vmatrix}

Expanding:

i^(2×23×1)j^(1×23×2)+k^(1×12×2)\hat{i} (2 \times 2 - 3 \times 1) - \hat{j} (-1 \times 2 - 3 \times 2) + \hat{k} (-1 \times 1 - 2 \times 2)

 i^(1)j^(8)+k^(5)\hat{i} (1) - \hat{j} (-8) + \hat{k} (-5) 

L=1i^+8j^5k^\mathbf{L} = 1 \hat{i} + 8 \hat{j} - 5 \hat{k}

Magnitude of Angular Momentum

L=12+82+(5)2L = \sqrt{1^2 + 8^2 + (-5)^2}

 L=1+64+25=90=310L = \sqrt{1 + 64 + 25} = \sqrt{90} = 3\sqrt{10} 

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The position vectors of two 1 kg particles, (A) and (B), are given by r→A=α1t2i^+α2tj^+α3tk^ m and r→B=β1ti^+β2t2j^+β3tk^ m respectively (α1=1 m/s2,α2=3n m/s,α3=2 m/s,β1=2 m/s, β2=−1 m/s2,β3=4p m/s), where t is time, n and p are constants. At t=1s,|V→A|=|V→B| and velocities V→A and V→B of the particles are orthogonal to each other. At t = 1 s, the magnitude of angular momentum of particle (A) with respect to the position of particle (B) isL kgm2s−1. The value of L is _____.