Q.

The product of all solutions of the equation e5logex2+3=x8,x>0, is :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

e8/5

b

e

c

e2

d

e6/5

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let's solve the given equation:

e5(logex)2+3=x8, x>0e^{5(\log_e x)^2 + 3} = x^8, \quad x > 0

Step 1: Take the natural logarithm on both sides

Taking loge\log_e (natural logarithm) on both sides:

loge(e5(logex)2+3)=loge(x8)\log_e \left( e^{5(\log_e x)^2 + 3} \right) = \log_e \left( x^8 \right)

Since loge(ey)=y\log_e (e^y) = y and loge(x8)=8logex\log_e (x^8) = 8 \log_e x, we get:

5(logex)2+3=8logex5 (\log_e x)^2 + 3 = 8 \log_e x

Step 2: Let y=logexy = \log_e x

Define y=logexy = \log_e x, so the equation becomes:

5y2+3=8y5y^2 + 3 = 8y

Rearrange:

5y28y+3=05y^2 - 8y + 3 = 0

Step 3: Solve for yy

Solving the quadratic equation:

y=(8)±(8)24(5)(3)2(5)y = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(5)(3)}}{2(5)}

 y=8±646010y = \frac{8 \pm \sqrt{64 - 60}}{10} y=8±410y = \frac{8 \pm \sqrt{4}}{10} y=8±210y = \frac{8 \pm 2}{10} y=1010=1, y=610=0.6y = \frac{10}{10} = 1, \quad y = \frac{6}{10} = 0.6

Step 4: Convert back to xx

Since y=logexy = \log_e x, we get:

x=e1=e, x=e0.6x = e^1 = e, \quad x = e^{0.6}

Step 5: Find the product of all solutions

P=e×e0.6=e1+0.6=e1.6P = e \times e^{0.6} = e^{1 + 0.6} = e^{1.6}

Final Answer:

e1.6\boxed{e^{1.6}}

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon