Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The range of aR for which the function ⨍ (x)=(4a-3) (x_loge5)+2(a-7)cotx2sin2x2, x≠2nπ, n∈N has critical points, is :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

-43,2

b

(-, -1]

c

(-3, 1)

d

[1,)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f(x)=(4a-3)(x-log5)+2(a-7)cosx2sinx2sin2x2=(4a-3)(x-log5)+(a-7)sinx f'(x)=4a-3+(a-7)cosx f(x) is min or maxf'(x)=0 cosx=-(4a-3)a-7 f(x) has critcal pointscosx is not defined cosx>1 3-4aa-7-1>0 3-4a-a+7a-7>0 10-5aa-7>0a-2a-7<0 (a-2)(a-7)<0 a(2,7) cosx>-1 3-4aa-7+1>0 -4-3aa-7>0 3a+4a-7<0 (3a+4)(a-7)<0 -43<a<7   

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring