Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 The solution of primitive integral equation x2+y2dy=xydx is y=y(x) . If y(1)=1 and yx0=e then x0 is 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

2(e21)

b

2(e2+1)

c

3 e

d

e2+12

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

  Put y=Vx  dydx=V+xdvdxfrom given dydx=xyx2+y2V+xdvdx=Vx2x21+V2=V1+V2xdvdx=VVV31+V2=V31+V21+V2V3dv=-dxx1V3+V2V3dv=dxx12V2+logV=logx+Cx22y2+logylogx=logx+C

logyx22y2=CPasses through (1,1)_

log1-12=C,  C=12logyx22e2=12 Put y=eloge x22e2=121+12=x22e2x22e2=32x2=3e2x02=3e2x0=3e

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
 The solution of primitive integral equation x2+y2dy=xydx is y=y(x) . If y(1)=1 and yx0=e then x0 is