Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The solution of the differential equation x3dydx+4x2tany=exsecy satisfying y(1)=0, is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

tany=(x2)exlogx

b

siny=ex(x1)x4

c

tany=(x1)exx3

d

siny=ex(x1)x3

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

We have,

     x3dydx+4x2tany=exsecyx3cosydydx+4x2siny=exx4cosydy+4x3sinydx=xexdxdx4siny=xexdx

On integrating, we get 

x4siny=(x1)ex+C

It is given that y=0 where x=1.

Putting x=1 and y=0 in (i), we get C=0

Putting C=0 in (i) , we get

x4siny=(x1)exsiny=ex(x1)x4

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring