Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The solution of dydx=y3+2x2yx3+2xy2 is:

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x2y23=Bx2y2

b

x2+y23=Bx2y2

c

x2y23=x2y2

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given equation is homogeneous. Let y = vx

 dydx=v+xdvdx y3+2x2yx3+2xy2=v+xdvdx (y/x)3+2(y/x)1+2(y/x)2=v+xdvdx

v3+2v1+2v2=v+xdvdx xdvdx=vv2+21+2v21=v1v21+2v2 1+2v2v1v2dv=dxx1+2v2v(1v)(1+v)dv=dxx Av+B1v+D1+vdv=dxx

where A(1v)(1+v)+Bv(1+v)+Dv(1v)=1+2v2
Putting v = 0, A = 1

v=1, B=32v=1, D=32 1v+3211v3211+vdv=dxx

Integrating both side, we get

lnv+32ln(1v)132ln(1+v)=lnx+lnclnv32ln(1v)32ln(1+v)=lncxv/{(1v)1+v}3/2=cxvcx2=1v23ycx22=1y2x23  x2y23=x2y2c2 x2y23=Bx2y2,1c2=B

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring