Q.

The sum of all the local minimum values of the twice differentiable function f:RR defined by f(x)=x33x23f''(2)2x+f''(1) is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

-22

b

-27

c

0

d

5

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given,

f(x)=x33x232f''(2)x+f''(1)

Then, f'(x)=3x26x32f''(2)

f''(x)=6x6

Put x = 1and x= 2,

f''(2)=126=6 and f''(1)=0

Therefore, f(x)=x33x232×6x+0

 f(x)=x33x29x           ...(i)

and f'(x)=3x26x9 and f''(x)=6x6

Equate f'(x)=0 gives,

    3x26x9=0    3x22x3=0    3(x+1)(x3)=0    x=1,x=3

Now, f''(1)=6(1)6=12<0

f''(3)=6(3)6=12>0

(1) is maxima. 3 is minima.

Local minimum value = f(3)

f(3)=(3)33(3)29(3)             [using Eq. (i)]=272727f(3)=27

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The sum of all the local minimum values of the twice differentiable function f:R→R defined by f(x)=x3−3x2−3f''(2)2x+f''(1) is