Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

The sum of an infinite geometric series whose first term  limx0K=12013{xtanx+2K}2013 and whose common ratio is the value of  limx0etan3xex32ln(1+x3sin2x)  is ……

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 2.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 limx0K=12013{xtanx+2K}2013
 =limx0{xtanx}×20132013
 =limx0{xtanx}                                                          [0<xtanx<1]
=1
   Ist term GP=1
Now, limx0etan3xex32ln(1+x3sin2x)
 = limx0etan3xx312ln(1+x3sin2x)
 =limx0ex3(etan3xx31)(tan3xx3)(tan3xx3).12ln(1+x3sin2x)x3sin2xx3sin2x0
 =limx012(tan3xx3x3sin2x) =limx012(tanxxx3)(tan2x+x2+xtanxx2)(x2sin2x) =12.13.3.1=12
Common ration = 12
 S=1112=1(12)=2

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The sum of an infinite geometric series whose first term  limx→0∑K=12013{xtanx+2K}2013 and whose common ratio is the value of  limx→0etan3x−ex32ln(1+x3sin2x)  is ……