Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The sum of the squares of the 

perpendiculars on any tangent to the  ellipse 

x2/a2+y2/b2=1 from two points on the minor

 axis each at a distance  a2b2 from the centre is 

 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2a2

b

2b2

c

a2+b2

d

a2b2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The eccentricity e of the given ellipse is given 

by g2=1b2/a2a2b2=a2e2  . So the point on the minor

axis, i.e. y-axis at a distance  a2b2 from the  centre  (0, 0) 

of the ellipse are (0, ± ae).  

The equation of the tangent at any point (a cos θ, b sin θ) 

on the ellipse is xacosθ+ybsinθ=1 

  So the required sum is  

aesinθb1cos2θa2+sin2θb22+aesinθb1cos2θa2+sin2θb22=(aesinθb)2+(aesinθ+b)2b2cos2θ+a2sin2θ×a2=2a2a2e2sin2θ+b2b2cos2θ+a2sin2θ

 =2a2a2b2sin2θ+b2b2cos2θ+a2sin2θ=2a2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring