Q.

The tangents to x2+y2=a2 having inclinations α and β intersect at P. If cotα+cotβ=0 then the locus of P is 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

x+y=0

b

xy=0

c

none of these

d

xy=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let the coordinates of P be (h, k). 

Let the equation of a tangent from P(h, k) to the circle

x2+y2=a2 be y=mx+a1+m2

Since P(h, k) lies on y=mx+a1+m2.

 k=mh+a1+m2 (kmh)2=a1+m2 m2h2a22mkh+k2a2=0

This is a quadratic in m. Let the two roots bem1 and m2.Then,

m1+m2=2hkh2a2

But, tan a= m1 tanβ=m2 and it is given that 

cotα+cotβ=0

 1m1+1m2=0m1+m2=02hkk2a2=0hk=0

Hence, the locus of (h, k) is xy = 0. 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon