Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

The total number of local maxima and local minima of the functio f(x)=(2+x)3,3<x1x2/3,1<x<2

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

2

b

1

c

0

d

3

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Since limx1f(x)=limx1+f(x)=1

So, f is continuous on (– 3, 2). Also

f(x)=3(x+2)2, 3<x<1(2/3)x1/3, 1<x<0,0<x<2

f' (0) does not exist

Lf(1)=limx1f(x)f(1)x+1=limx1(x+2)31x+1=limx1(x+1)(x+2)2+(x+2)+1x+1=3Rf(1)=limx1+x2/31x+1=limx1+x1/31x1/3+1x1/3+1x2/3+x1/3+1=2

So f is not differentiable at x =  1

For x0,1,f(x)0 Critical points of  f are 1,0 At

x=1,f has a local maximum and x=0,f has a local minimum.

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon