Q.

The two adjacent sides of a parallelogram are 2i^4j^5k^ and 2i^+2j^+3k^ Find the two-unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

OR

Find the area of the triangle whose vertices are P(1,2,1),Q(3,1,2) and R(2,3,1)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let ABCD be the given parallelogram with
AB=2i^4j^5k^ and AD=2i^+2j^+3k^
Clearly, the diagonal AC is given by AB+AD
=4i^2j^2k^
and the diagonal BD is given by BC+BA
=ADAB=6j^+8k^
[using parallelogram law of addition]
Question Image

Now, the unit vector along AC is given by
AC|AC|=4i^2j^2k^16+4+4=4i^2j^2k^24=4i^2j^2k^26=16(2i^j^k^)
and the unit vector along BD is given by
BD|BD|=6j^+8k^36+64=6j^+8k^10=15(3j^+4k^)
Now, area of parallelogram ABCD
=12|AC×BD|Here, AC×BD=i^j^k^422068
=i^(16+12)j^(320)+k^(240)=4i^32j^+24k^ and |AC×BD|=(4)2+(32)2+(24)2=421+82+62=41+64+36=4101
 Area of parallelogram ABCD =12×4101 =2101 sq units 

OR

Let a, b, and c be the position vectors of points P, Q and R, respectively.
Then, a=i^+2j^k^,b=3i^j^+2k^ and c=2i^+3j^k^
Clearly, the area of ΔPQR=12|PQ×PR|
Now, PQ= Position vector of Q - Position vector of P
=ba=(3i^j^+2k^)(i^+2j^k^)=4i^3j^+3k^
PR= Position vector of R - Position vector of P
=ca=(2i^+3j^k^)(i^+2j^k^)=3i^+j^
PQ×PR=ij^k^433310=(03)i^(09)j^+(4+9)k^=3i^+9j^+13k^ and |PQ×PR|=(3)2+(9)2+(13)2=9+81+169=259
So area of ΔPQR=12|PQ×PR|=12259 sq units 
 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The two adjacent sides of a parallelogram are 2i^−4j^−5k^ and 2i^+2j^+3k^ Find the two-unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.ORFind the area of the triangle whose vertices are P(−1,2,−1),Q(3,−1,2) and R(2,3,−1)