Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

The value of a for which the function  f(x)=(4a3)(x+log5)+2(a7)cotx2sin2x2 does not possess critical points, is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

 (,4/3)2,

b

[1, )

c

(,1)

d

(,4/3) 

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have,

f(x)=(4a3)(x+log5)+2(a7)cotx2sin2x2 f(x)=(4a3)(x+log5)+(a7)sinx f(x)=(4a3)+(a7)cosx

If f (x) does not have critical point, then f' (x)=0 does not have any solution in R.

Now,

f(x)=0cosx=4a37a4a37a1 14a37a1                                  [|cosx|1]a74a37aa4/3 or a2.

Thus, f' (x)=0 has solution in R If a a4/3 or a2.

So, f' (x)=0 is of solvable in R if a<4/3 or a>2

i.e. a(,4/3)(2,)

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon