Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

The value of the integral

-π/2π/2dx(1+ex)(sin6x + cos6x) is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

2π

b

π2

c

0

d

π

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I = -π/2π/2dx(1+ex)(sin6x + cos6x)             = 0π/21(1+ex)(sin6x + cos6x) + 1(1+e-x)(sin6x + cos6x)dx             = 0π/2dx(sin6x + cos6x)             = 0π/2dxsin4x - sin2x cos2x + cos4x             = 0π/2sec4xtan4x - tan2x + 1dx             = 0π/2(1 + tan2x)(sec2x)tan4x - tan2x + 1dx                  Let tanx = t   sec2x dx = dt             = 0(1 + t2)dtt4-t2+1 = 0(1 + 1t2)t2 -1 + 1t2dt             = 0(1 + 1t2)(t - 1t)2 + 1dt             = tan-1t - 1t0             = π2 + π2             = π

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon