Q.

The value of the integral  sinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61cos2θdθ is : (where C is a constant of integration)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

118[92sin6θ3sin4θ6sin2θ]32+C

b

118[92cos6θ3cos4θ6cos2θ]32+C

c

118[1118cos2θ+9cos4θ2cos6θ]32+C

d

118[1118sin2θ+9sin4θ2sin6θ]32+C

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

I=sinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61cos2θdθ I=sinθ.2sinθcosθ.sin2θ(sin4θ+sin2θ+1)(2sin4θ+3sin2θ+6)122sin2θdθ Let  sinθ=tcosθdθ=dt I=t2(t4+t2+1)(2t4+3t2+6)12dt =(t5+t3+t)t(2t4+3t2+6)12dt =(t5+t3+t)(t2)12(2t4+3t2+6)12dt =(t5+t3+t)(2t6+3t4+6t2)12dt Let,  2t6+3t4+6t2=u2 12(t5+t3+t)dt=2udu  I=(u2)12.2udu12 =u26du=u318+C =(2t6+3t4+6t2)3218+C When   t = sin θ

And  t2=1cos2θ will give option (4) 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon