Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

The value of the limit limxπ242(sin3x+sinx)(2sin2xsin3x2+cos5x2)(2+2cos2x+cos3x2) is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 8.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Ltxπ242(sin3x+sinx)(2sin2x.sin3x2+cos5x2)(2+2cos2x+cos3x2)

=Ltxπ282(sin3x+sinx)(cosx2cos7x2+cos5x2)(2.2cos2x+cos3x2)

=Ltxπ2162sinx.cos2x2sinx.sinx2+2sin3x.sinx222cos2x=Ltxπ2162sinx.cos2x8sinx2sinx22=1628(12)(1)22=8

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The value of the limit limx → π242(sin3x+sinx)(2sin2xsin3x2+cos5x2)−(2+2cos2x+cos3x2) is