Q.

The value of sin21°cos9°cos84°cos6° is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

18

b

38

c

14

d

32

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

sin21°cos9°cos84°cos6°

=12[2sin21°cos9°2cos84°cos6°]

=12[sin(21°+9°)+sin(21°9°)cos(84°+6°)cos(84°6°)]

=12[sin30°+sin12°cos90°cos78°]

=12[12+sin12°0cos(90°12°)]

=12[12+sin12°sin12°]

=12×12=14

Explanation:

Expression:

sin(21°) × cos(9°) − cos(84°) × cos(6°)

Step-by-Step Solution:

Step 1: Simplify sin(21°) × cos(9°) using the product-to-sum identity:

sin(A) × cos(B) = ½ [sin(A + B) + sin(A − B)]

Let A = 21° and B = 9°:

sin(21°) × cos(9°) = ½ [sin(21° + 9°) + sin(21° − 9°)]

= ½ [sin(30°) + sin(12°)]

Step 2: Simplify cos(84°) × cos(6°) using the product-to-sum identity:

cos(A) × cos(B) = ½ [cos(A + B) + cos(A − B)]

Let A = 84° and B = 6°:

cos(84°) × cos(6°) = ½ [cos(84° + 6°) + cos(84° − 6°)]

= ½ [cos(90°) + cos(78°)]

Since cos(90°) = 0:

= ½ [0 + cos(78°)]

= ½ cos(78°)

Step 3: Combine the results:

sin(21°) × cos(9°) − cos(84°) × cos(6°)

= ½ [sin(30°) + sin(12°)] − ½ cos(78°)

Since cos(78°) = sin(12°):

= ½ [sin(30°) + sin(12°) − sin(12°)]

= ½ sin(30°)

Since sin(30°) = ½:

= ½ × ½

= ¼

Final Answer

The value of the expression is ¼.

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The value of sin21°cos9°−cos84°cos6° is