Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Three solid cylinders A, B and C each of mass m and radius R are allowed to roll down on three inclined planes A', B' and C' respectively (each of inclination θ) such that for A' and A coefficient of friction is zero, for B' and B coefficient of friction is greater than zero but less than tanθ3 and for C' and C coefficient of friction is more than tanθ3. On reaching bottom of the inclined plane

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A takes minimum time to reach the bottom

b

B has minimum total kinetic energy

c

B has minimum translational kinetic energy

d

 C has maximum angular speed

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

For pure rolling , μmin=tan θ1+mR2Ic=tan θ1+mR2mR2/2=tan θ3

Therefore for A , it is pure translational motion .For B , it is rolling with slipping and for C, it is pure rolling .

C has max torque Maximum ω. In case of  B, energy is  dissipated.

In case of A , acceleration of centre of cylinder ( g sin θ) is maximum , so time taken is minimum .

mgsinθ-μmgcosθ=maB aB>23g sin θ In case of C ,ac=gsinθ1+12=23gsinθ

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring