Q.

Three sparingly soluble salts that have same solubility products are given below :

I) A2X    II) AX    III) AX3

Their solubilities in a saturated solution will be such that

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

II > III > I

b

II > I > III

c

III > I > II

d

III > II > I

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

\large {A_2}X(s) \rightleftharpoons \mathop {{A_2}X}\limits_{{S_1}} (aq) \to \mathop {2{A^ + }}\limits_{2{S_1}} (aq) + \mathop {{X^{ - 2}}}\limits_{{S_1}} \left( {aq} \right)

\large {K_{sp}} = {\left( {2{S_1}} \right)^2} \times {S_1} = 4S_1^3

\large AX(s) \rightleftharpoons \mathop {AX}\limits_{{S_2}} (aq) \to \mathop {{A^ + }}\limits_{{S_2}} (aq) + \mathop {{X^ - }}\limits_{{S_2}} {\text{(aq)}}

\large {K_{sp}} = S_2 \times {S_2} = S_2^2

\large A{X_3}(s) \rightleftharpoons \mathop {A{X_3}}\limits_{{S_3}} (aq) \to \mathop {{A^{ + 3}}}\limits_{{S_3}} (aq) + \mathop {3{X^ - }}\limits_{3{S_3}} (aq)

\large {K_{sp}} = {\left( {3{S_3}} \right)^3} \times {S_3} = 27S_3^4

Given, \large 4S_1^3=S_2^2=27S_3^4

S3 > S1 > S2

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon