Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Three vectors AB and C add upto zero. Find which is false.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A×B×C is non zero unless B and C are parallel.

b

A×B·C is non zero when B and C are parallel.

c

If AB and C define a plane, A×B×C is in that plane.

d

A×B·C=|A||B||C|  C2=A2+B2.

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since A+B+C=0, the three vectors will have a plane that passes through them.( Since the three vectors form a triangle)

A+B+C=0 (A+B+C)xB=0xB    (BxB=0) (AxB=BxC) .....(i) (AxB)xC=(BxC)xC  As BxC is perpendicular to both B and C  So (BxC)xC will be zero only if B and C are parallel. Considering (i) AxB=BxC  (AxB).C=(BxC).C  As BxC is always perpendicular to C (BxC).C=0 considering (i) AxB=BxC(AxB)xC=(BxC)xC BxC will be in a plane perpendicular to both B and C so (BxC)xC will be perpendicular to both BxC and C  so  (BxC)xC must be in the plane of the traingle formed by A, B, C. So(AxB)xC will be in that plane. If C2=A2+B2  Aand B are perpendicular AxB=ABsin90°=AB (AxB) and C are parallel (AxB).C=ABCcos0°=ABC

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring