Q.

Two blocks A and B of masses 1 kg and 2 kg respectively are connected by a string, passing over a light frictionless pulley. Both the blocks are resting on a horizontal floor and the pulley is held such that string remains just taut. At moment t=0, a force F=20t newton starts acting on the pulley along vertically upward direction as shown in figure. Calculate height raised by the pulley up to that instant.

Question Image

(Take, g=10 m/s2 )

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

58 m

b

59 m

c

56 m

d

57 m

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let T be the tension in the string. Then,

2T=20t T=10t newton 

 Let the block A loses its contact with the floor at time t=t1. This happens when the tension   in string becomes equal to the weight of A. Thus,  T=mg 10t1=1×10 t1=1 s                                        …………………………….(i)

 or   Similarly, for block B, we have   or 10t2=2×10                             …………………………(ii)

 i.e. the block B loses contact at 2 s. For block A, at time t such that tt1 let a be its   acceleration in upward direction. Then,  10t-1×10=1×a=(dv/dt)  or 

 Integrating this expression, we get  

 Integrating this expression, we get                            ……………..(iii)

Substituting t=t2=2 s

v=5t2-10t+5                                                                       

v=20-20+5=5 m/s                              …………………(iv)

From Eq. (iv), dy=5t2-10t+5dt               ……………….(v)

where, y is the vertical displacement of block A at time tt1. Integrating, we have

y=0y=hdy=t=1t=25t2-10t+5dt

h=5t3312-10t2212+5[t]12=53m

 Height raised by pulley upto that instant =h2 =56 m

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon