Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let we have two concentric circles with centre O as shown. Now, draw a chord AB in the larger circle, which touches the smaller circle at a point P, as shown in the below figure.

Question Image

It is clear from the figure that AB is tangent to the smaller circle to point P.

Thus, OP ⊥ AB

Applying Pythagoras’ theorem to ΔOPA,

OA2= AP2 + OP2

52 = AP2 + 32

AP2 = 25 - 9

AP2 = 16

AP = 4

Now, as OP ⊥ AB,

Since the perpendicular from the centre of the circle bisects the chord, AP will be equal to PB.

So, AB = 2AP = 2 × 4 = 8 cm

Thus, the length of the chord of the larger circle is 8 cm.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring