Q.

Two long parallel wires X and Y, separated by a distance of 6 cm, carry currents of 5A and 4A, respectively, in opposite directions as shown in the figure. Magnitude of the resultant magnetic field at point P at a distance of 4 cm from wire Y is x×105T. The value of x is ________. 

[Take permeability of free space as μ0=4π×107 SI units.]
Question Image

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

To find the resultant magnetic field at point PP, we use the Biot-Savart law for the magnetic field due to a long straight current-carrying wire:

B=μ0I2πdB = \frac{\mu_0 I}{2\pi d}

where:

  • μ0=4π×107\mu_0 = 4\pi \times 10^{-7} T·m/A (permeability of free space),
  • II is the current in the wire,
  • dd is the perpendicular distance from the wire to the point.

Step 1: Magnetic Field Due to Wire Y at Point P

Wire YY carries a current of IY=4AI_Y = 4A downward, and point PP is at a perpendicular distance of dY=4d_Y = 4 cm = 0.04 m. The magnetic field at PP due to YY is:

BY=(4π×107)×42π×0.04B_Y = \frac{(4\pi \times 10^{-7}) \times 4}{2\pi \times 0.04}

 BY=16π×1072π×0.04B_Y = \frac{16\pi \times 10^{-7}}{2\pi \times 0.04}

 BY=16×1070.08B_Y = \frac{16 \times 10^{-7}}{0.08} 

BY=2×105 TB_Y = 2 \times 10^{-5} \text{ T}

Using the right-hand rule, the direction of BYB_Y at PP is out of the page.

Step 2: Magnetic Field Due to Wire X at Point P

Wire XX carries a current of IX=5AI_X = 5A upward, and the perpendicular distance from XX to PP is:

dX=6+4=10 cm=0.10 md_X = 6 + 4 = 10 \text{ cm} = 0.10 \text{ m}

The magnetic field at PP due to XX is:

BX=(4π×107)×52π×0.10B_X = \frac{(4\pi \times 10^{-7}) \times 5}{2\pi \times 0.10}

 BX=20π×1072π×0.10B_X = \frac{20\pi \times 10^{-7}}{2\pi \times 0.10} 

BX=20×1070.20B_X = \frac{20 \times 10^{-7}}{0.20} 

BX=1×105 TB_X = 1 \times 10^{-5} \text{ T}

Using the right-hand rule, the direction of BXB_X at PP is into the page.

Step 3: Resultant Magnetic Field at P

Since, fields BYB_Y and BXB_X are in the opposite direction , the net magnetic field (Out of the page) at PP is

Bnet=BY-BX

 Btotal=(2×105)-(1×105)

 Btotal=1×105 T

Thus, the value of xx is 1.

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon