Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Two similar thin equi-convex lenses, of focal length f each, are kept coaxially in contact with each other such that the focal length of the combination is F1. When the space between the two lenses is filled with glycerin (which has the same refractive index (μ=1.5) as that of glass) then the equivalent focal length is F2. The ratio F1:F2 will be

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

3 : 4

b

2 : 1

c

1 : 2

d

2 : 3

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 According to lens maker's formula  1f=(μ-1)1R1-1R2 1f=(μ-1)1R-1-R=(1.5-1)2R=1R

Two similar equi-convex lenses of focal length f each are held in contact with each other.

The focal length F1 of the combination is given by

Question Image

1F1=1f+1f=2f; F1=f2=R2                   .........(i)

For glycerin in between lenses, there are three lenses, one concave and two convex

Focal length of the curve lens is given 

Question Image

1f'=(1.5-1)-2R=-1R

Now, equivalent focal length of the combination is given by

1F2=1f+1f'+1f;1F2=1R-1R+1R=1RF2=R                                                                      ..........(ii)  Dividing equation (i) by (ii), we get F1F2=12

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring