Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Two smooth blocks A of mass 1 kg and B of mass 2 kg are connected by a light string passing over a smooth pulley as shown. The block B is sliding down with a velocity 2 m/s. A force F is applied on the block A, so that the block B will reverse its direction of motion after 3 s.

Question Image

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

F = 14 N

Setup:

  • mA=1 kgm_A=1\text{ kg} on horizontal. mB=2 kgm_B=2\text{ kg} on a smooth 3737^\circ incline.

  • BB initially moves down the plane at u=2m s1u=2\,\text{m s}^{-1}.

  • It reverses after 3 s3\text{ s} ⇒ with constant acceleration, v=0v=0 at t=3 st=3\text{ s}:

a=vut=023=23 m s2a=\frac{v-u}{t}=\frac{0-2}{3}=-\tfrac{2}{3}\ \text{m s}^{-2}

(negative along “down the plane”, so BB accelerates up.)

Take g=10m s2g=10\,\text{m s}^{-2}, sin37=35\sin37^\circ=\tfrac{3}{5}.

Equations along motion:

For BB (down positive):

2a=2gsin37T2(23)=12TT=403 N.2a=2g\sin37^\circ - T \Rightarrow 2(-\tfrac{2}{3}) = 12 - T \Rightarrow T=\frac{40}{3}\text{ N}.

For AA (right positive, same magnitude a=23a=\tfrac{2}{3}):

a=FT23=F403F=14 N.a=F-T \Rightarrow \tfrac{2}{3}=F-\tfrac{40}{3} \Rightarrow F=14\text{ N}.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring