Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Vertices of a variable triangle are (3 , 4) (5cosθ,5sinθ)  and (5sinθ,5cosθ) . Then locus of its orthocenter is                                  

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(x+y1)2+(xy7)2=100

b

(x+y7)2+(xy1)2=100

c

(x+y7)2+(x+y1)2=100

d

(x+y7)2+(xy+1)2=100

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Circumcentre of the triangle is (0 , 0) and  Centroid (3+5cosθ+5sinθ3,4+5sinθ5cosθ3)                                                                     [  Centroid divides the join of orthocenter and circumentre in 2 : 1 ratio  G=2S+O3 If S=(0,0) then 3G=O

let (h , k) represents orthocenter and  3G=3+5cosθ+5sinθ ,4+5sinθ-5cosθ        

h=3+5cosθ+5sinθ           k=4+5sinθ5cosθ   

Adding and subtracting the above equations we get                           

sinθ=h+k710;cosθ=hk+110 

squarring and adding                                                                                                            

(h+k7)2+(hk+1)2=100                                                                                      

   Locus of orthocenter is   (x+y7)2+(xy+1)2=100                                                                                                                

 

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring