Q.

Which of the following is (are) TRUE?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

Let  f:[1,2]R be given by  f(x)=2x2+x+[x2][x], where  [t] is greatest 
integer function  t. The no. Of points where  f(x) is not continuous is ‘4’ 

b

) If the function  f(x)=sin3x+αsinxβcos3xx3,  x{0} is continuous at  x=0 then  f(0)  is equal to ‘- 4’

c

Let  a>0, be a root of the equation  2x2+x2=0. If  Ltx1a16(1cos(2+x2x2))(1ax)2=α+β17   where  α,βz, then  αβ=136

d

Let  f(x)=x5+2x3+3x+1,x  and  g(x) be a function such that g(f(x))=x  for  all  x,  then  g'(7)g(7)=114 (Here  g'(x) means first derivate of  g(x)  w.r.t  x)

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

A)  β=0,α=3, use  sin3x  expansion,   f(0)=4
B) differentiate  g(f(x))=x & put  x=1 simplify
C)  2x2+x[x]+[x2], check at  x=1,0,1,2,3,2
At  x=2,3,1,0
f(x) is discontinuous
D)  2x2+x2=0 roots are a,b 

2x2x2=0 roots are   1a,1b

Given limit   limx1a16(1cos(2(x1a)(x1b)))(x1b)2(x1b)2a2(x1a)2

=1642limx1a(x1b)2a2(x1a)2=32(1a1b)21a2=153+1717

So,  α=153, β=17

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon