∫ex−e[x]−x−2⋅e3x2dx∀x∈(0,1) is equal to [where [x] is greatest integer of x
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
ex−12e2x−2ex+1+12logex−1+e2x−2ex+1+C
b
ex−12e2x−2ex−1+12logex−1+e2x−2ex−1+C
c
ex−12e2x−2ex−1+logex−1+e2x−2ex−1+C
d
ex−12e2x−2ex−1−logex−1+e2x−2ex−1+C
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Let I=∫ex−e[x]−x−2e3x2dx,x∈(0,1)I=∫ex−e−x−2e3x2dxI=∫ex2−2ex−1e3x2dx Put ex=tI=∫t2−2t−1 dtI=∫(t−1)2−(2)2dt=(t−1)2(t−1)2−(2)2−(2)22log(t−1)+(t−1)2−(2)2+C=ex−12ex−12−2−logex−1+ex−12−2+C=ex−12e2x−2ex−1−logex−1+e2x−2ex−1+C