Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

∫ex−e[x]−x−2⋅e3x2dx∀x∈(0,1) is equal to [where [x] is greatest integer of x

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

ex−12e2x−2ex+1+12logex−1+e2x−2ex+1+C

b

ex−12e2x−2ex−1+12logex−1+e2x−2ex−1+C

c

ex−12e2x−2ex−1+logex−1+e2x−2ex−1+C

d

ex−12e2x−2ex−1−logex−1+e2x−2ex−1+C

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let I=∫ex−e[x]−x−2e3x2dx,x∈(0,1)I=∫ex−e−x−2e3x2dxI=∫ex2−2ex−1e3x2dx Put ex=tI=∫t2−2t−1 dtI=∫(t−1)2−(2)2dt=(t−1)2(t−1)2−(2)2−(2)22log⁡(t−1)+(t−1)2−(2)2+C=ex−12ex−12−2−log⁡ex−1+ex−12−2+C=ex−12e2x−2ex−1−log⁡ex−1+e2x−2ex−1+C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring